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ABSTRACT
Many internet applications are powered by machine learned mod-
els, which are usually trained on labeled datasets obtained through
either implicit / explicit user feedback signals or human judgments.
Since societal biases may be present in the generation of such
datasets, it is possible for the trained models to be biased, thereby
resulting in potential discrimination and harms for disadvantaged
groups. Motivated by the need for understanding and addressing
algorithmic bias in web-scale ML systems and the limitations of
existing fairness toolkits, we present the LinkedIn Fairness Toolkit
(LiFT), a framework for scalable computation of fairness metrics as
part of large ML systems. We highlight the key requirements in de-
ployed settings, and present the design of our fairness measurement
system. We discuss the challenges encountered in incorporating
fairness tools in practice and the lessons learned during deployment
at LinkedIn. Finally, we provide open problems based on practical
experience.

1 INTRODUCTION
Several large-scale internet applications make use of search and
recommendation systems that are powered by algorithmic models
and techniques. Recent studies have shown that results produced
by a biased machine learning model can result in discrimination
and potential harms for disadvantaged groups [6, 10]. A key reason
is that machine learned models that are trained on data affected by
societal biases may learn to act in accordance with them.

While there have been several efforts to build fairness toolk-
its that offer a comprehensive set of fairness metrics that can
be measured, provide a suite of bias mitigation techniques, or
enable the comparison of fairness metrics across various algo-
rithms [2, 3, 5, 7, 12, 13, 26, 27, 31, 33], our experience at LinkedIn
suggests that none of them addresses the need for tackling these
problems at scale or integrating easily with ML pipelines (§7). Moti-
vated by the need for understanding and addressing algorithmic bias
in web-scale ML systems, we present the LinkedIn Fairness Toolkit
(LiFT), a framework for scalable computation of fairness metrics
as part of large ML systems. We highlight the key requirements
in deployed settings (§2), and present the design and architecture
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of our system (§3 and §4). We present results from deployments
at LinkedIn and discuss the challenges encountered and lessons
learned during deployment of fairness tools in practice (§5 and §6).
Finally, we provide open problems and research directions based
on our experiences (§8).

The key contributions of our work are as follows:
• Architecture of how bias measurement and mitigation tools
can be integrated with production ML systems, to ensure
monitoring and mitigation at each stage of the ML lifecycle.

• Design of a fairness solution that scales to handle large
datasets, and is flexible to use both inmodel training / scoring
pipelines as well as for ad hoc data analysis.

• Implementation of a fairness toolkit that measures biases
in training data, computes fairness metrics for trained mod-
els, and detects statistically significant differences in model
performance across different subgroups.

• Discussion of challenges encountered and lessons learned
during deployment as well as open problems based on prac-
tical experience.

2 PROBLEM SETTING
We present the key requirements for the adoption of fairness tools
in practice as part of web-scale ML systems. For deployment in
such systems, our experience suggests that bias measurement and
mitigation solutions must be:

• Flexible: Fairness tools should be usable as libraries for
ad-hoc exploratory analyses (e.g., with Jupyter notebooks)
as well as be conducive to deployment in production ML
workflows that run on a regular cadence. It should also be
straightforward to integrate these solutions with existing
ML platforms, to increase the likelihood and ease of adoption
by model developers.

• Scalable: Computation associated with bias measurement
and mitigation should be amenable to being performed over
several nodes in a distributed computing environment, since
data parallelism enables fast computation over large datasets.
Furthermore, since datasets are typically stored in distributed
file systems and large-scale deployed ML model training
workflows are typically setup in this fashion, ensuring that
bias measurement andmitigation frameworks are distributed
allows for easy integration and adoption.

Thus, our problem can be formulated as: Provide an architecture
for integrating bias measurement and bias mitigation into production
ML systems that operate on datasets stored in distributed file systems,
and prescribe a design for fairness toolkits that are flexible to use,
integrate easily with existing ML platforms, and scale to large datasets.
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Figure 1: High-level architecture of a ML training and serving system, showing how LiFT’s bias measurement andmitigation components can
be integrated.

3 SYSTEM OVERVIEW, DESIGN, AND
ARCHITECTURE

We next give an overview of LiFT, our scalable framework for
computing metrics for fairness in large-scale AI applications, and
describe the system design and architecture.

LiFT comprises of bias measurement and mitigation components
that can be intergrated into different stages of a ML training and
serving system (Figure 1). It leverages Apache Spark [32], an open-
source distributed general-purpose cluster-computing framework,
to ensure that it can operate on datasets stored on distributed file
systems as well as achieve data parallelism and fault tolerance.
Utilizing Spark also provides compatibility with a variety of of-
fline compute systems, ML frameworks, and cloud providers, for
maximum flexibility.

LiFT is designed as a reusable library at its core, exposing several
APIs and classes at various levels depending on how an ML practi-
tioner wishes to interface with the system. Thus, users can easily
leverage the library in ad-hoc analyses, deploy higher-level driver
programs in offline workflows, or make use of a configuration-
driven experience that integrates with LinkedIn’s ML pipelines.
The design of the library, its APIs, and configuration are described
in §3.2.

We next describe the high-level architecture of LiFT that enables
it to integrate with LinkedIn’s ML system, as well as the lower-level
design that enables its flexibility and scalability.

3.1 Integration with ML Pipelines
A web-scale ML system can usually be divided into an offline model
training component and an online model serving component. The
offline component consists of workflows for preparing training
datasets, training ML models (along with model validation and hy-
perparameter tuning), and for testing and benchmarking trained
models. These workflows are often scheduled to run regularly so
that new models can be trained on fresh data. The online serving
system is responsible for identifying the correct model to be served,
retrieving indexed features, computing predictions in a real-time
manner, and measuring and monitoring model performance and
business metrics on an ongoing basis. Here, we present the archi-
tecture of a fairness solution that integrates with almost all stages
of the ML lifecycle (Figure 1):

Before training: This step deals with measuring metrics for rep-
resentativeness and label distribution across different subgroups, as
well as mitigation techniques such as [20]. By representativeness,

we refer to measures for comparing the distribution of values of
one or more protected attributes in the training data against a given
desired (benchmark) distribution. Such measures are intended to
inform the model developer about the extent to which the training
data is representative across different subgroups, as desired for the
application. We note that the desired distribution need not neces-
sarily correspond to the population distribution. As an example,
for applications such as gender determination from facial images
or face recognition, improving model performance for minority
groups may require oversampling from such groups. By label distri-
bution, we refer to measures for comparing the label distributions
across different subgroups (with each other), towards the goal of
uncovering potential labeling biases within groups.

During training: This step enables the measurement of fairness
metrics and bias mitigation during training, say, on each mini-batch
during stochastic gradient descent or on the validation dataset
during hyperparameter tuning. Such measurement can allow for
choosing the right hyperparameters to enable the right balance of
fairness and model performance. Furthermore, black-box mitiga-
tion techniques like [3] or in-processing methods like [21] can be
integrated as part of this module to obtain models that are optimal
with respect to both performance and bias.

After training: This module enables measuring fairness metrics
on the test dataset (for the final model) as well as post-processing
mitigation methods like [14]. Fairness measurement post model
training can involve comparing predicted score distributions across
different subgroups (similar to measurements on training data),
computing aggregate metrics of unfairness/inequality, or directly
comparing performance metrics (such as AUROC, accuracy, PPV
(precision), TPR (recall), and FPR) across different protected groups.
In non-trivial cases of unequal prevalence rates, differences inmodel
performance across subgroups can be expected due to the impos-
sibility results [9]. Measuring multiple fairness metrics can thus
be helpful to decide the appropriate tradeoffs, or to iterate on the
training data and model altogether.

Online serving: The final component of the lifecycle involves
measuring and monitoring fairness metrics on an ongoing basis.
This step can not only be used for measuring these metrics during
A/B tests, but also help with detecting issues like model drift with
respect to fairness.

The above architecture is prescriptive, and the ability of a fairness
system to integrate with an ML framework is dependent on the
hooks exposed by that framework. To measure and mitigate bias



before training, LiFT uses a hook exposed by LinkedIn’s ML system
meant for training data transformations. To enable post training
measurement of fairness metrics, it utilizes the ML system’s hooks
for computing custom evaluation metrics. With a system that has
hooks for custom metrics during training, one could use LiFT’s
existing capabilities to export the best model (thus far) based on
fairness metrics, for example. LiFT is designed to be extensible so
that additional components and functionality for bias measurement
and mitigation can be incorporated over time.

3.2 Design for Flexibility
For enabling use in exploratory settings as well in production work-
flows and ML pipelines, LiFT is designed as a library at its core,
with wrappers and a configuration language meant for deployment
(see Figure 2).

3.2.1 Customizability and Extensibility. The library provides access
to APIs that can be used directly to compute fairness metrics at
various levels of granularity:

• High-level APIs: These act as entry points for users wish-
ing to integrate bias measurement and mitigation logic into
their code, e.g., computeDatasetMetrics, computeModelPerfor-
manceMetrics. These APIs bundle various low-level APIs and
typically accept a parsed configuration instance.

• Low-level APIs: Users can also choose to utilize specific
functionalities offered by LiFT, such as computePermutation-
TestMetrics or computeJensenShannonDivergence. This allow
users to selectively work with only those capabilities they
might care about.

Furthermore, key classes (shown in Figure 2) can be extended to
enable custom computation:

• Distribution class: Computes observed distributions of pro-
tected attributes, and calculates distance and divergence met-
rics with respect to other Distribution instances.

• BenefitMap class: Provides capabilities to capture benefit
vectors and compute aggregate inequality metrics.

• ModelPrediction class: Provides a standardized interface
to compute model performance metrics, with support for
data sampling and statistical tests (like permutation tests) to
estimate if observed differences are statistically significant.
Instances of this class can be used in collections for single
system computation, or in Spark Datasets for distributed
computation.

• CustomMetric class: Provides a specific interface that users
can extend to define their ownUser Defined Functions (UDFs)
that can be plugged into the fairness toolkit. Thus, while
LiFT natively supports classification metrics, the Custom-
Metric class enables defining metrics that allow it to be used
in ranking scenarios as well.

3.2.2 Configuration-Driven. Once users have identified their met-
rics of interest and developed their own workflow, they may choose
to deploy their own custom code that uses LiFT’s APIs. However, the
toolkit also provides a wrapper program that loads input datasets,
joins them with other datasets containing protected attribute in-
formation, computes various fairness metrics, and writes out the
report to a user-specified location. This program is available both

Figure 2: Design of LiFT and its interaction with external systems.
Theflowchart at the top shows how configuration-driven Spark jobs
and ML plugins enable fairness metric computation in user work-
flows and ML systems respectively. At the bottom, the interaction
between high and low level APIs and classes is shown.

as a Spark driver program, as well as a plugin for LinkedIn’s ML
framework. In both cases, the toolkit is driven by a user-specified
configuration that allows for quick and easy deployment in pro-
duction workflows, without requiring additional overheads of test-
ing and verification. Shown below is an example configuration
that specifies the input dataset of interest, the protected attribute
dataset, the appropriate join keys, distance metrics to compute,
and the aggregate inequality metrics to evaluate for each specified
performance metric.
'datasetPath': '/path/to/dataset',
'uidField': 'userIdField',
'labelField': 'datasetLabelField',
'scoreField': 'modelScoreField',
// Indicates if model scores are raw scores or probabilities
'scoreType': 'PROB', // raw scores passed through a sigmoid
'protectedAttributeField': 'protectedDatasetAttributeField',
'uidProtectedAttributeField': 'protectedDatasetJoinKey',
'protectedDatasetPath': '/path/to/protected/attributes',
'outputPath': '/path/to/output',
'distanceMetrics': ['DEMOGRAPHIC_PARITY', 'EQUALIZED_ODDS'],
// Use the following metrics to compute benefit vectors
'performanceBenefitMetrics': ['PRECISION', 'RECALL'],
// Specify benefit metrics to compute and their parameters
'overallMetrics': ['GENERALIZED_ENTROPY_INDEX': '0.5']



3.3 Design for Scalability
LiFT uses the following techniques to scale the computation of
fairness metrics over billions of records:

• Single job to load data files into in-memory, fault-tolerant
and scalable data structures.

• Strategic caching of datasets and any pre-computation per-
formed.

• Balancing distributed computation with single system exe-
cution to obtain a good mix of scalability and speed.

As shown in Figure 3, prior to computing fairness metrics, the
toolkit builds a virtual dataset comprised of only the primary key,
labels and/or model predictions for the input dataset, and a sec-
ond virtual dataset comprising the primary key and protected at-
tributes for the dataset containing the protected attribute informa-
tion. The datasets are loaded into Spark DataFrames [4], which are
in-memory, fault-tolerant, and scalable data structures similar to a
relational database. These are then preprocessed appropriately and
joined to form the final virtual dataset of interest, which is cached
to memory and disk to ensure quick downstream computation.

Fairness metric computations that involve distributions only
work with Distribution class instances. The creation of these in-
stances results in the aggregation of the input dataset across a given
set of dimensions and storing the resultant distribution in-memory,
on a single system. This ensures that distribution comparisons
can be performed quickly, avoiding the overheads associated with
repeated distributed computation, and is efficient because these
distributions are computed only once.

A similar idea is used for the BenefitMap instances. Their creation
results in the distributed computation of benefit metrics, with the
resulting benefit vectors being stored in-memory on a single system.
This ensures that subsequent computations of aggregate metrics of
fairness (on these benefit vectors) are quick and efficient.
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Figure 3: Scalability Design in LiFT.

Users can choose to write custom metrics that operate on these
precomputed Distribution and BenefitMap instances, thereby en-
abling quick single-system computation of these metrics. More
involved metrics can instead operate on the cached virtual dataset,
to ensure that the entire computation is distributed over several
nodes. The Spark SQL Catalyst query optimizer and Spark Tung-
sten engine can leverage this end-to-end query plan to produce an
optimized execution plan. This choice between single system and
distributed computation is not only available to users, but is also

used within LiFT for its natively supported metrics. While scalable
to large datasets, making use of only distributed computation can
encounter the following issues that affect its execution speed:

• I/O overheads when loading data over several nodes,
• Network overheads, and
• Query optimization overheads.

For example, the computation of fairness metrics such as Demo-
graphic Parity or Equalized Odds (or metrics like TPR (True Positive
Rate), FPR (False Positive Rate) and FNR (False Negative Rate), that
are used to compute benefit vectors for aggregate metrics) revolve
around the estimation of a ‘generalized confusion matrix’. A gen-
eralized confusion matrix uses expected values for true and false
positives and negatives, thereby requiring that the model only as-
sign a P(y = 1|x) value for each data point x , rather than needing
them to pick a classification threshold as well. The computation
of such a matrix can be distributed easily, with the map operation
counting the true and false positives and negatives, and the reducer
summing up these counts.

However, the non-parametric statistical tests [11] that LiFT sup-
ports involve computations performed over several trials, to obtain a
distribution of the test statistic. Attempting to distribute these trials
over several nodes led to a significant slowdown in the computation
time due to Spark’s query plan optimization process, whose runtime
is non-linear in the number of sub-queries. Furthermore, these tests
achieved sufficient statistical power with about 100, 000 data points,
indicating that we did not have to distribute the computation of
each trial, and that retrieving a random sample of datapoints from
the distributed virtual dataset was sufficient. Since each trial of
the statistical test involved random sampling or shuffling of the
data, if it were evaluated using a distributed computing framework,
we would have triggered several shuffle steps and created massive
network overhead, thereby slowing down computation even more.
Thus, we used Spark to project only the desired columns and sample
the large dataset efficiently, and utilized single system computation
to perform the actual statistical test.

Finally, if the dataset is small enough or the cardinality of the
protected attributes is small, it might be beneficial to stick to single
system execution for the final metrics computation to avoid slow-
downs due to repeated disk reads or other distributed overheads.

4 METRICS MEASURED
Currently, LiFT supports the measurement of fairness metrics pre-
and post- training, as well as the mitigation of bias using a variant
of the preprocessing technique described in [20]. The decision to
support measurement during these two stages was primarily driven
by the availability of hooks into LinkedIn’s ML system, to ensure
easy integration and adoption. Nevertheless, this does not preclude
capabilities such as measuring metrics during training. LiFT is also
designed to be extensible, enabling users to plug-in their own met-
rics using User Defined Functions (UDFs), incorporate individual
modules as part of data validation systems [30], or enhance its
capabilities to address more measurement and mitigation strategies
during various stages of the ML lifecycle.



4.1 Fairness Metrics for Training Data
To measure the representativeness and label distribution of training
data, LiFT supports various distribution and divergence metrics:

(1) KL and JS Divergences: These metrics can be used to com-
pute a weighted sum of logarithmic differences between a
reference distribution and the observed distribution of pro-
tected attributes. Let P be the desired distribution and Q
be the observed distribution. Then, the KL divergence is
KL(P | |Q) = ∑

x P(x) log
(
P (x )
Q (x )

)
. Thus, a uniform reference

distribution would weight all differences equally, while using
the protected attribute distribution of a population would
ensure that differences are weighted by the population den-
sity of the protected groups. The JS Divergence is similar
to the KL Divergence, but captures a symmetric difference
between the reference and target distributions. If M is the
average distribution of P and Q , the JS Divergence is the
mean of the KL Divergences fromM to P and fromM to Q .

(2) L-p Norm and Total Variation Distances: For p ≥ 1,
Lp (P ,Q) =

(∑
x |P(x) −Q(x)|p

)1/p . The Total Variation Dis-
tance is equal to half the L1 distance, and is the largest pos-
sible difference between the probabilities that the two distri-
butions can assign to the same event.

(3) Demographic Parity: The above metrics capture represen-
tativeness with respect to a reference distribution. We make
use of the idea of Demographic Parity to measure label distri-
bution differences between protected groups. Demographic
Parity typically requires that P(Ŷ = 1|G = д1) = P(Ŷ =
1|G = д2) ∀д1,д2 ∈ G , where Ŷ is the model’s prediction and
G is the protected attribute. Repurposing this for training
data, we measure δDP (д1,д2) = |P(Y = 1|G = д1) − P(Y =
1|G = д2)| where Y is the label field in the training data. We
thus desire δDP (д1,д2) = 0 ∀д1,д2 ∈ G to ensure thatG and
Y are statistically independent in the training data.

4.2 Fairness Metrics Post Model Training
LiFT supports the following categories of metrics for measuring
fairness of the final model:

(1) Distance and Divergence Metrics: These metrics are sim-
ilar to those computed for the training data, but make use
of the model predictions instead of the labels. Note that this
class of metrics includes a measure of the extent to which
Demographic Parity is violated, i.e., |P(Ŷ = 1|G = д1) −
P(Ŷ = 1|G = д2)|. We also compute additional metrics such
as Equalized Odds, which captures the differences in True
and False Positive Rates for different protected groups [18]:
δEO (y,д1,д2) = |P(Ŷ = 1|Y = y,G = д1) − P(Ŷ = 1|Y =
y,G = д2)|.

(2) Aggregate Fairness Metrics: These are inequality mea-
sures such as the Generalized Entropy Index [28] (and related
metrics like Theil’s L and T Indices) computed over different
choices of benefit vectors. A benefit vector is a vector whose
elements (benefit values) capture some notion of benefit (or
model performance) for each entity across which inequal-
ity is to be measured. Benefit values can be defined at the

individual level or computed for each protected group, de-
pending on whether we are measuring individual or group
notions of fairness. An inequality measure I maps a benefit
vector b to a non-negative real number I (b), with b being
considered more fair than b’ if and only if I (b) < I (b’).

(3) Differences inModel Performance:We also compute sta-
tistically significant differences in performance metrics for
each pair of subgroups using permutation tests [11, 15, 24].
FairTest [31] is the only other toolkit with such a test. How-
ever, the implementation there is not applicable in all sce-
narios, while LiFT’s version supports custom metrics [11].

5 DEPLOYMENT RESULTS
Wedeployed LiFT as part of threeweb-scaleML pipelines at LinkedIn
to measure fairness metrics as part of regular model training. These
pipelines make use of internal datasets to learn models that power
various products. Two of these were deployed as Spark jobs in
custom workflows, while the third was deployed as a plugin into
LinkedIn’s ML framework:

• Dataset D1 consisted of about 28M records with around 50
continuous features, used to train a classifier evaluated on
recall at a fixed value of precision. The model is used to keep
LinkedIn members safe on the website.

• Dataset D2 consisted of about 3.5M records with approxi-
mately 600 features, used to train another classifier evaluated
on recall at a specific precision value. This model too keeps
LinkedIn members safe.

• Dataset D3 consisted of about 23M records with around 130
continuous features, used to train a ranking model evaluated
by its AUC. This model is used by the Jobs platform.

Public Dataset: To ensure reproducibility, we also evaluated our
solution on the Adult dataset (D4) from the UCI ML Repository
[22]. It consists of 48842 records, which we split into a 70%− 15%−
15% train-validation-test split. We made use of all the features
available except gender, race, and the ‘final weight’ feature, and
one-hot-encoded categorical features. We then trained a logistic
regression model with L2 regularization, resulting in a final model
with an AUC of 0.909. To ensure that LiFT’s performance could
be compared across all 4 datasets, we oversampled the test dataset
(∼ 7400 records) to generate a final dataset of about 10M records.

In this section, we present results that validate LiFT’s flexibility
and scalability. We discuss the experiences of our deployments, the
challenges faced and lessons learned in the next section.

5.1 Flexibility
Since LiFT provides a Spark driver program as well as a plugin for
the in-house ML framework, integration with production pipelines
was extremely straightforward, with only a configuration file needed
to measure metrics of interest. All three pipelines used a combina-
tion of gender (male, female and unknown) and country as their
protected attributes; however D1 and D2 used multiple fairness
metrics with respect to precision and recall, while D3 focused on
measuring fairness using permutation tests for AUC. The ease of
setup, deployment, and measurement of bias despite the differ-
ences in the combinations of workflows and fairness requirements
validated LiFT’s flexibility.



5.2 Scalability
To validate the scalability of our framework, we made use of the
same configuration across all four datasets to ensure that the results
can be compared:
protectedAttributeField: "gender",
distanceMetrics: "INF_NORM_DIST,TOTAL_VAR_DIST,JS_DIVERGENCE,

KL_DIVERGENCE,DEMOGRAPHIC_PARITY,
EQUALIZED_ODDS",

overallMetrics: "GENERALIZED_ENTROPY_INDEX=0.5,
THEIL_L_INDEX=,THEIL_T_INDEX=",

performanceBenefitMetrics: "AUC,PRECISION,RECALL,FPR"

As shown above, we measured six distance and divergence re-
lated metrics using a uniform gender-label distribution as the ref-
erence (wherever necessary). We also computed three aggregate
metrics on four benefit vectors, each of which was comprised of
model performance metrics for each protected group. Thus, the
same set of eighteen metrics were computed across all four datasets,
allowing us to measure the scalability of the implemented solution.

Figure 4: Resource utilization (in log scale) for model training, scor-
ing, and fairness metrics computation for 4 large-scale datasets.

Figure 4 summarizes the results, depicting the resource utiliza-
tion of various stages measured in GB-Hours1. We have also pre-
sented the data for model training and test data scoring stages, for
reference. Due to the stark differences in resource consumption, we
represent the Y-axis in the log scale. Note that for dataset D4 (the
Adult dataset), training was done on about 34000 data points but
the other stages were performed on the oversampled test dataset
consisting of 10M records.

We see that the fairness measurement stages for both training
data and model performance are able to scale to datasets of different
sizes. Furthermore, they consume an order of magnitude fewer
resources than test data scoring, with the distance computations
for the training data being the cheapest to evaluate. That is, their
computation is at least as efficient as that of model scoring. In
our experiments, we kept the number of nodes and their memory
constant, thereby ensuring that resource utilization (measured in
GB-Hours) is directly proportional to the time taken. Then, we can
clearly see that fairness metrics computation runs several orders of
magnitude faster than model training, thereby adding a negligible
amount of overhead to the overall model development process.
1It is the product of the memory used, the number of nodes, and the time taken, and
ensures that a partial picture is not presented where time is traded off for memory, or
vice versa. GB-Hours and related measures are also used by cloud computing vendors
to estimate usage and determine billing.

Since none of the datasets Di make use of protected attributes,
about half the fairness metric computation time is actually spent
in joining them with an independent dataset containing these at-
tributes. Since these metric measurements are computed only using
the labels, scores, and protected attributes of each data point, their
runtimes are largely independent of the number of features present
in the dataset. Furthermore, the computation is also model agnostic
in terms of its type, complexity, or training time.

5.3 Effectiveness of Metrics Measured
While LiFT does not propose any new fairness measures, we never-
theless address the effectiveness of the supported metrics in this
section. In our experiments, we measured six distance metrics and
twelve aggregate benefit metrics for three pairs of gender groups.
Shown below is an excerpt of fairness metrics computed for the
UCI Adult dataset (parameters omitted for brevity):

Generalized Entropy Index (GEI) for TPR 0.0028
Generalized Entropy Index (GEI) for FPR 0.0908

Equalized Odds (EO) for label = 1 0.0821
Equalized Odds (EO) for label = 0 0.0998

p-value (permutation tests for TPR and FPR) 0.0
P(Ŷ = 1|Y = 1,д = ‘Female’) 0.5111
P(Ŷ = 1|Y = 1,д = ‘Male’) 0.5932
P(Ŷ = 1|Y = 0,д = ‘Female’) 0.0706
P(Ŷ = 1|Y = 0,д = ‘Male’) 0.1704

We see that GEI and EO are not easily interpretable / actionable
(with respect to the degree of ‘unfairness’), while the permutation
test clearly indicates that these differences are statistically signifi-
cant. However, GEI and EO values can be charted over time, and
changes can be detected easily, while the permutation test provides
a binary result.

Also, while the permutation test indicates if a difference is sta-
tistically significant, it is up to the end-user to ultimately decide if
this difference is worth acting upon. For example, the TPR is about
14% lower for the ‘Female’ group, while the FPR is about 58% lower
for the ‘Female’ group. These differences are large enough to be
statistically significant, causing the permutation test to reject in
both cases. However, the GEI for TPR is much lower than that for
FPR because the TPR values for the two groups are more similar
than their corresponding FPR values.

Thus, no single metric can be deemed the most effective; rather a
subset must be inspected to understand the larger picture and make
appropriate decisions pertaining to bias. In practice, users should
choose an appropriate set of metrics based on business and fairness
objectives and properties of their data, so that focus can be placed
only on those signals of interest. Depending on the context, some
metrics might be redundant while others might provide conflicting
signals (at first glance), and this insight can help narrow down the
metrics to track on a regular basis.

6 DEPLOYMENT IMPACT
6.1 Insights Gained from Deployments
For D1, our initial observation was that the model was unbiased
between genders globally and on a per-country basis, except for
a bias against the ‘unknown’ gender in one country. Upon closer



inspection, we discovered that our gender coverage was poor for
that country, with very few ‘male’ and ‘female’ data points and the
rest being assigned to the ‘unknown’ bucket. This made us realize
that (a) our metrics are only as good as our data, and (b) small
sample sizes lead to unreliable estimates with high variance.

For D2, EO showed us that the model was biased with respect
to recall (TPR), but unbiased with respect to FPR. This was how-
ever due to the fact that only two of {Precision, Recall, FPR} can be
equal in populations with different prevalence rates p (percentage
of positively labeled data points), since balancing any two requires
that the third be imbalanced: FPR = p

(1−p) ·
(1−PPV )
PPV ·TPR. Given

that the prevalence rates varied across gender and that the model
required a fixed high value of precision to be achieved, this ‘im-
possibility result’ caused an imbalance in recall while maintaining
equality in extremely low FPR values. Thus, there can be conflicting
notions of fairness (unbiased precision versus unbiased recall), and
a consensus must be reached with multiple stakeholders to make a
final decision. In this case, unbiased precision would ensure that
the related member experience would be great, while the unbiased
recall was not an issue since false negatives were being addressed
by a human-in-the-loop component.

Regarding D3, we observed that the model was unbiased with
respect to AUC. While this model was fair in the sense that it ranks
relevant results higher than irrelevant ones in a similar manner
across genders and countries, it brought to light that there can be
several more notions of ‘fair ranking’, and a plethora of potential
attributes that we could measure bias against.

6.2 Challenges Faced and Lessons Learned
Based on our experience in deploying fairness measurement solu-
tions in web-scale, production ML systems, we highlight key chal-
lenges that must be addressed for widespread adoption of fairness
in the ML lifecycle, and lessons learned through the development
and deployment of the LinkedIn Fairness Toolkit (LiFT). In light of
the socio-technical nature of many ML applications, we emphasize
that decisions pertaining to fairness need to be guided by social,
ethical, and legal dimensions, and based on inputs from a diverse
set of key stakeholders.

Adoption of a fairness toolkit is easiest when it integrates with
an ML service, making the entire process frictionless for the model
developer. Production settings also require that the adopted toolkit
scale to large datasets. Results should be easily interpretable since
ML developers and stakeholders might otherwise be overwhelmed
by the amount of fairness metrics, their definitions and potentially
conflicting signals. Support for custom metrics (through UDFs) is
also necessary for adoption, since different products andMLmodels
have different sets of metrics that they care about, and supporting
different measures can get unwieldy pretty quickly.

Focusing on a few fairness metrics and protected attributes
greatly simplifies the effort needed to measure and mitigate bias.
Furthermore, identifying other key segments such as countries or
educational qualifications also helps monitor fairness within these
cohorts. Different applications have different requirements and
hence, different fairness needs. For example, a model that identifies
bad actors in an ecosystem might want to ensure extremely high
and equal precision for all protected groups, but might be relaxed

about its recall requirements. The fairness notion for a ranking sys-
tem could require the top retrieved results to be representative of
the candidate pool [14]. The impossibility results also imply that not
all fairness requirements can be simultaneously achieved. We thus
need to consider ML fairness in the context of specific definitions
and requirements, and make note of any caveats or assumptions
upfront, using model cards for example [23].

Statistical notions of fairness are necessary to enable bias mea-
surement over large noisy datasets, providing measures such as
p-values, confidence intervals, and standard errors. Statistical fair-
ness concepts will not only make bias decision thresholds clearer,
but also help account for uncertainty in protected attribute values.

To ensure thatMLmodels are unbiasedwith respect to certain no-
tions of fairness, we may need access to users’ protected attributes.
Such information may not be easily available and users may need
to volunteer to provide this data. Furthermore, given access to this
data, we need to ensure that this information is only used for bias
measurement and mitigation purposes, and that data access is other-
wise tightly controlled. In the absence of user-provided information
regarding protected attributes, there may be a need to infer such
attributes. However, this introduces an element of uncertainty in
the data quality, which must be accounted for in our estimates of
bias and mitigation strategies. Also, there might be cases where
attribute inference might be impossible or ethically inappropriate.

7 RELATEDWORK
Existing fairness toolkits are designed to be run either as standalone
instances on a single machine, or with a specific cloud provider
/ ML framework. For example, IBM’s open sourced AI Fairness
360 tool [7] is designed for execution on a single machine (over
appropriately sized datasets), making use of ML frameworks like
‘scikit-learn’ [25]. While we are unaware if the IBM Cloud offering
of this library is a distributed variant, its tight integration with
this platform nevertheless requires that offline workflows and ML
pipelines use IBM Cloud. Microsoft AzureML Interpret is similar in
this regard, requiring the adoption of Azure. Google’s What-If Tool
works only with TensorFlow [1]. Thus, the deployment of these
fairness toolkits is hard without the wholesale adoption of these
cloud providers / ML frameworks. LiFT however is a more flexible
system, enabling deployments in a wider variety of settings.

Publicly available fairness toolkits such as Aequitas [27], Audit-
AI [26], FairLearn [3], FairML [2], Fairness Comparison [12], Fair-
ness Measures [33], FairTest [31], Themis [13], and Themis-ML [5]
provide access to higher and lower-level APIs but seem to be de-
signed for single system execution only, thereby being constrained
to operate on relatively smaller datasets. As a result, despite their
comprehensive suite of metrics and mitigation strategies, these
toolkits cannot be directly deployed in production settings. On the
other hand, LiFT is designed to leverage distributed computation
where possible, and integrates easily with offline workflows.

Due to the above solutions being single system based Python
libraries, LiFT cannot be compared against them in the context of
scalability and efficiency. One possible approach is to materialize
large distributed datasets onto a single node to allow these libraries
to compute fairness metrics. However, this can result in long pro-
cessing times or failure to compute metrics altogether. Furthermore,



requiring that LiFT operate on a single node (for these comparisons)
would only seek to compare underlying technologies and not the
libraries themselves. It is also not straightforward to extend existing
single machine toolkits to enable distributed computation, since
this would require either a complete distributed-first overhaul of
their libraries, or necessitate an under-the-hood translation of their
compute logic to run on several nodes in a parallel manner.

Finally, whilemost relatedwork aims to provide a comprehensive
set of fairness measures, LiFT primarily focuses on providing a
framework that is flexible, scalable and easy to integrate into offline
workflows. However, these goals do not imply that only metrics
amenable to distributed computation are part of this library, nor
does it preclude the addition of new measurement techniques. It
is important to note that LiFT’s scalability comes at the cost of
distributed computation overhead for smaller datasets. This can
nevertheless be reduced by tuning the amount of resources and the
number of nodes required. No such tuning can be done to scale
single system computation.

8 CONCLUSION AND FUTUREWORK
Considering the importance of measuring and mitigating algorith-
mic bias in large-scale ML based applications, we presented the
LinkedIn Fairness Toolkit (LiFT), a system for scalable and flexible
computation of fairness metrics during different stages of the ML
lifecycle. We highlighted the key requirements of such a system,
described its overall design as well as individual components, and
highlighted the practical challenges faced and lessons learned dur-
ing deployment. We are in the process of open-sourcing our library
towards wider use by researchers and practitioners.

We discuss a few directions for future work based on our ex-
periences. Considering that typical ML based products/services
consist of several ML models and non-ML components composed
together in different stages, a fruitful direction is to explore ap-
proaches for measuring fairness for the product/service as a whole.
Another potential direction is to explore notions and definitions
of fairness for ‘human-in-the-loop’ / ‘algorithm-in-the-loop’ sys-
tems [16]. Whether collected from users or inferred, there is the
possibility of errors in the values of protected attributes, or values
being missing altogether. Thus, another area of research would
involve accounting for these uncertainties in estimates of bias, or
during bias mitigation.

From a system design perspective, one direction for future work
involves revisiting existing measurement and mitigation strategies
to design them with scalability in mind, thereby enabling easy
adoption in production. Yet another direction involves extending
distributed measurement and mitigation solutions to nearline and
streaming settings, to measure fairness metrics on an ongoing basis
and apply bias mitigation strategies in a reactive manner.

Successful and broad adoption of fairness tools such as LiFT is
contingent on collaborating with a diverse set of key stakeholders
(spanning product, legal, policy, PR, engineering, AI/ML, and other
teams) and building consensus on the desired notions of bias and
fairness. A constructive direction is to further understand the soci-
etal perspectives and needs of practitioners (e.g., [8, 17, 19, 29]), and
to investigate the role of bias measurement and mitigation tools as
part of such a holistic approach.
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